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Abstract Assessment of the complete active space-based

state-specific multireference Møller–Plesset perturbation

theory, SS-MRMPPT, has been performed on the ground

states of HX (X = F, Cl, and Br) systems through the

computation of potential energy surface (PES) and spec-

troscopic constants (such as equilibrium bond lengths,

rotational constants, centrifugal distortion constants,

vibrational frequencies, anharmonicity constants, and dis-

sociation energies that are closely related to the shape and

accuracy of the energy surfaces) extracted from the com-

puted PES. The SS-MRMPPT (involves multiple ampli-

tude sets to parametrize the exact wavefunction) approach

isolates one of the several states provided by an effective

Hamiltonian in an attempt to avert intruder states in size-

extensive manner and hence it forms the basis of a robust

approach to the electron correlation problem in cases where

a multireference formalism is required. The absence of

intruder problem makes SS-MRMPPT an interesting

choice for the calculation of the dissociation energy sur-

face(s). The performance of the method has been judged by

comparing the results with calculations provided by current

generation ab initio methods (multireference or single-

reference methods) and we found, in general, a very good

accordance between them which clearly demonstrates the

usefulness of the SS-MRMPPT method.

Keywords Multireference perturbation theory � Møller–

Plesset partitioning � Intruder effect � Potential energy

surfaces � Spectroscopic parameters � Hydrogen halides

1 Introduction

In recent times, multireference (multiconfiguration) elec-

tronic systems [described by the wavefunctions that are not

even qualitatively approximated by a single Hartree-Fock

(HF) function] have attracted much attention in the fields of

chemical (and material) sciences as they are abundant in

chemistry.1 Multireference situations often occur, for

example, in the mapping of complete reaction paths, in the

vicinity of conical intersections, during bond breaking, in

free radical chemistry, electronic excited states, and so on.

Over the past few decades, there has been a sustained and

continuous effort to develop reliable and robust multire-

ference (MR) methods for describing such systems or sit-

uations (see [1] for an excellent overview and extensive

bibliography). Compared to multireference configuration

interaction (MRCI) [2], multireference perturbation theory

(MRPT) methods scale better with the system size. From

its inception, MRPT represents a very useful yet relatively

inexpensive tool to investigate MR systems [3] retaining
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1 Of course, the use of genuine multireference methods presents

additional levels of complexity for the practitioners, when compared

with the corresponding single-reference methods. The genuine

multireference approaches often require a degree of subjective

judgment from the user to render the calculations manageable and

effective. The most obvious conceptual challenge is to choose a

meaningful active space for describing a given chemical problem.
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ab initio accuracy as it deals with two types of electron

correlation, nondynamic and dynamic,2 in a balanced and

effective way. It should mentioned here that the effects of

dynamical and nondynamical correlations are not additive

and need a coupled and balanced treatment for both. In

contrast to single-reference PT(SRPT) [4, 5], MRPT is not

uniquely defined and consequently, MRPT methods exist

in a number of variants [6–37], the developments being

carried on continuously. There are various pro and contra

issues for different MRPT methods, which shape their

numerical demands. The state-specific MRPT (SS-MRPT)

method, initially developed and implemented by Mahapa-

tra-Datta-Mukherjee [28, 29, 38] and later pursued by our

group [39–44], appears as an efficient and useful approach

to study many chemical problems [38–48]. Among the

multitude of MRPT approaches, the SS-MRPT method

suggested by Mahapatra et al. [28, 29] holds a lot of

appealing features such as (1) it is able to treat nondy-

namical and dynamical correlation effects in a balanced

and accurate manner (2) it is insensitive toward the intruder

states problem3 [49–51] yet allowing relaxation of zero-

order wavefunction within a model space (i.e., providing

fully relaxed treatment of the nondynamical correlation

where the CI coefficients of the active functions are itera-

tively updated as dynamical correlation) (3) it is both size-

extensive and size-consistent (when one use orbitals

localized on the separate fragments), and (4) It is spin-free

(applicable to both ground and excited states with either

closed-shell or open-shell configurations). It is worth not-

ing that the different variants of MRPT [say CASPT2

(second-order complete active space perturbation theory)

[6–8], MRMP2(second-order multireference Møller–Ples-

set perturbation theory) [9–12] and its multistate variant,

referred to as MCQDPT (multiconfiguration quasidegen-

erate perturbation theory) [13] approaches by and large

avoid the size-consistency error, but not rigorously

[52–55]. Recently, Evangelista et al. [45] demonstrated

that the SS-MRPT theory is particularly useful in MR focal

point extrapolations to determine ab initio limits (quickly

converges to the full CI limit). For these reasons, SS-

MRPT could represent a reliable approach to model any

region of the potential energy surface (PES)4 of a molec-

ular system (with closed/open-shell and singlets/non-sing-

lets model functions) even when the traditional effective

Hamiltonian-based MR methods fail due to intruders and

hence has the potential to serve as theoretical basis for the

routine investigation of molecular systems, in which strong

static electron correlation is present. All the tests on the SS-

MRPT approach that have been carried out so far [28, 29,

38–48] clearly demonstrate the effectiveness of this

method in handling of the MR ground and excited states

with either closed- or open-shell nature even for medium-

size molecular systems at a low computational cost,

yielding acceptably good results that can be meaningfully

compared with the established computationally expensive

full-blown coupled cluster (CC) estimates. At this point, it

is worth pointing out that the accuracy and applicability of

the SS-MRPT have been tested numerically on certain

representative examples in light of other MRPT methods

like the one by Chaudhuri et al. [56] and Hoffmann

et al. [46]. In the present paper, we further examine the

performance of the SS-MRPT within the framework of

multipartitioning Møller–Plesset (MP) scheme [57–59]

using Rayleigh–Schrödinger (RS) perturbative expansion,

(coined as SS-MRMPPT) in computations of the HX

(X = F, Cl, and Br) dissociation potentials, some involving

a heavy atom. The RS variant of SS-MRPT proposed by

Mukherjee and coworkers stems by a linearization of the

amplitude equations of their full-blown SS-MRCC method

[28]. We remark here that the emergence of the SS-MRPT

equations considered here is not based on a rigorous order-

by-order analysis of the parent SS-MRCC equations [28].

2 Nondynamic correlation is associated with the strongly interacting

reference determinants or configurations (via linear combination of

the reference functions) while the dynamic one gives contributions to

the wave function from the space orthogonal to that spanned by the

reference functions, i.e., arising from the couplings between the

model and outer spaces. Electronic structure methods capable of

providing ‘chemical accuracy’ for ground and electronically excited

states of molecules must include both dynamical and nondynamical

correlation effects.
3 Intruder problem is ubiquitous in studying potential energy surfaces

leading to the formulation of molecules. In the multireference

perturbation theory, intruder state problems (causing appearance of

very small energy denominators in PT series and leading to spurious

results of the entire PT calculations) are inevitable from the

theoretical point of view. On the other hand, for multireference

coupled cluster method based on the generalized Bloch equation,

intruder problem is a consequence of the polynomial character of

amplitude finding equations due to the exponential ansatz for the

wave function. Not only that, nonlinear character of the Bloch

equation also invite the existence of multiple solutions. Electronic

structure methods capable of providing chemical accuracy for ground

and excited states of atoms or molecules must be free from such

effects. The intruder state problem can usually be corrected by

widening the model space, but this inevitably leads to an increase of

the computational effort. The main essence of the development of

MR-based theory is to employ as small an active or reference space as

possible. A well-established workaround for this problem is to focus

on one single state of the effective Hamiltonian, leading to state-

specific methodology. In most cases, the influence of intruder states

becomes more important away from equilibrium regions and

successful treatment of this issue will influence the accuracy of

predicted energies.

4 The energy and behavior of a molecule can be expressed as a

function of the positions of the nuclei, that is, a potential energy

surface and hence many aspects of chemistry can be reduced to

questions about potential energy surfaces. A potential energy surface

arises naturally when the Born–Oppenheimer approximation is

invoked in the solution of the Schrödinger equation for a molecular

system.
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SS-MRMPPT is seen as a remedy to a problem which

plagues the traditional multireference RS perturbation

theory—the so-called intruder state problem.5 The avail-

ability of a large number of theoretical studies, including

several CC calculations of the HX spectroscopic parame-

ters, makes these molecules good model systems for testing

the performance of a new method. To proceed further, we

recall briefly the essential ingredients and structural aspects

of the formulation of the SS-MRMPPT used which has

been published in detail previously [28, 29, 38–44].

The following presentation serves (1) to provide the

necessary background (salient methodological aspects), (2)

to introduce our notation, and (3) to describe the unique

advantages of the SS-MRMPPT approach to study the

correlation problem for systems requiring a multireference

formalism. Additional details can be found in the original

papers on this theory [28, 29]. The principal idea of the

state-specific MR approach (say SS-MRPT) is to solve the

Schrödinger equation to obtain only the target eigenvalue

out of the whole spectrum. We present here a brief sum-

mary of the main ingredients of the formulation. SS-MRPT

operates with the Jeziorski–Monkhorst (JM) parametriza-

tion of the wavefunction [60, 61]6

w ¼
X

l

expðTlÞj/licl ð1Þ

and assumes the existence of a complete active space

(CAS) wave function written as w0 ¼
P

l clj/li: In the

case of the spin-adapted version of SS-MRMPT [38–44],

each model space function /l is a configuration state

function (CSF) in a given spin-coupling scheme. The spin-

adaptation of the equations in such cases is straightforward

and trivial, entirely analogous to the one for the case of

closed-shell SRPT. Using Eq. (1), geared specifically to

treat a single electronic state, leads to the state-specific

(SS) MR methods. Here, cl’s are the combining

coefficients of the model space functions. The cluster

operator Tl (defined with respect to the l-th reference

configuration as the respective Fermi vacuum), by its

action on /l, leads to various virtual functions vl
l with

attendant cluster amplitudes tl
l . The intermediate

normalization is here assumed, which translates to the

requirement of zero amplitudes for internal excitations in

the case of complete model space. In SSMR method, all the

parameters entering into the wave function ansatz are

optimized for a specific or desired electronic states. In SS-

MRMPPT theory [28, 29, 38], the Hilbert space-based

perturbation theory is reduced to a state-specific formalism

through an amplitude equation to determine the cluster

operator as (that should hold for each l and l)7

tlð1Þ
l ðlÞ ¼

Hll

E0 � Hll½ � þ
Pm6¼l

m t
lð1Þ
l ðmÞHlmðc0

m=c0
lÞ

E0 � Hll½ � ð2Þ

where E0 and cl
0 denote unperturbed state energy (corre-

sponds to the CAS energy) and the frozen (zero-order)

model space coefficient(s), respectively. Eq. (2) indicates

explicit dependence of the cluster amplitudes on the zeroth-

order coefficients cl
0 for the state of interest. This shows

that the working equations for the cluster amplitudes are

indeed state–specific in nature. In the above-mentioned

cluster finding equation, we have used the following

notations: hvl
l jT

lð1Þ
l j/li ¼ t

lð1Þ
l ðlÞ; hvl

l jT
lð1Þ
m j/li ¼ t

lð1Þ
l ðmÞ;

hvl
l jHj/li ¼ Hl

ll; and hvl
l jH0jvl

l i ¼ Hl
ll : We emphasize

here that in the SS-MRMPPT formalism, every CSF is

associated with its own cluster excitation operator to take

care of the differential and the dynamical correlation

effects, instead of applying one universal operator to the

whole reference function. Equation (2) is coupled nonlinear

equation involving various cluster amplitudes (and the

model space coefficients) and we note that the only cou-

pling between the various Tls is via the sum over m
appearing in the numerator of the above equation. There is

thus no coupling between the various excitation compo-

nents in Tls, and the coupling is present with only those Tms

which lead to the same excitation as by the product of

excitation operators for the specific tl
l(1) under consider-

ation. Thus, no cluster amplitudes need to be stored in the

formulation considered here.

The second-order perturbation equation for the energy

(with the restriction that only one root of the effective

Hamiltonian is physically meaningful) is given by
X

m

eH ð2Þlm cm ¼ Eð2Þcl ð3Þ

where eH ð2Þlm ð¼ Hlm þ
P

l Hllt
lð1Þ
m ðmÞÞ denotes reference-

specific dressed Hamiltonian. A typical feature of the

5 Traditional multireference Rayleigh–Schrödinger perturbation the-

ory is designed to describe a manifold of states. However, as the

perturbation is switched on the relative disposition of these states and

those states outside the reference space may change in such a way that

convergence of the perturbation series is impaired or even destroyed.
6 This ansatz was first introduced by Jeziorski and Monkhorst in the

context of state-universal multireference coupled cluster.

7 In SSMR formulation as, via the JM ansatz, every virtual function is

generated from each model function by the action of a cluster operator

of suitable excitation rank, there is an inherent redundancy of the

number of cluster amplitudes vis-a-vis the corresponding configura-

tion interaction coefficients accompanying the virtual function

(needed to fully characterize the eigenfunction w). Using sufficiency

conditions satisfying some important physical requirements (such as

the theory be free from intruders and be rigorously size-extensive)

Mukherjee et al. developed the SS-MRPT method [28, 29] by

invoking a partition of H into H0 (a zeroth-order part) and V
(a perturbation), and an order-by-order expansion of cluster operators,

Tl of their SS-MRCC formalism [28]. Although sufficiency condition

proposed by Mukherjee et al. is very useful, the underlying physical

meaning still evades a clear understanding.
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SS-MRMPPT formalism up to second order of energy is

the use of the zeroth-order coefficients to compute the

cluster operators and eH ; but allow the coefficients to relax

while computing E(2), since this is obtained by diagonal-

ization [via Eq. (3)]. SS-MRMPPT uses the relaxed coef-

ficients cl (as it is more general), rather than some

pre-computed set of frozen coefficients cl
0. Hence, the SS-

MRPT formulation provides a completely relaxed form of

w. It is thus able to deal with the mixed-states problem,

characterized by large changes in the relative contributions

of the coefficients of reference functions in the correlated

final wave function compared to the zero-order function. In

the present paper, all SS-MRMPPT calculations were car-

ried out using relaxed description. We should mention here

that the SS-MRMPPT method considered here is com-

pletely flexible in the sense that one can use it to compute

the energy either as an expectation value with respect to the

unrelaxed or frozen function (akin to CASPT2 or

MRMP2): Eð2Þ ¼
P

l;m c0
l
eH ð2Þlm c0

m ; where cl
0 stands for the

unrelaxed coefficients of the reference functions. In the

case of large CAS, the unrelaxed method has computa-

tional merits as compared with the relaxed one, diagonal-

ization of large matrix is not necessary.8 The unrelaxed

description of CASPT2 and MRMP2 methods can be

converted into the corresponding relaxed ones with gen-

eralizations for the multistate variants (MS-CASPT2 and

MCQDPT), in which the wavefunctions of different states

are allowed to mix [13, 36, 62, 63].

In SS-MRPT method, the denominator of the cluster

finding equation, Eq. (2) guarantees the existence of a

natural gap, and this characteristic allows the intruder state

problem to be avoided and convergence of the perturbation

series occurs in a natural way (without having to add an

arbitrary shift in the denominator), irrespective of whether

the state of interest is ground or excited, as long as the

unperturbed energy E0 is rather well removed from the

energies of states evolving from the virtual spaces. It is

noteworthy that this aspect for the avoidance of intruder

states can almost always be met for ground state, but is a

much trickier issue for the computation of the excited

states. In the case of the excited state(s), more iteration

steps are required (which are application specific) to obtain

convergence of the equations as compared to the ground

state. Convergence of the iterative steps required is

reasonably fast for all cases reported here. Recently,

Evangelista et al. [45] have shown (via the calculation of

the time required to compute the second-order energy) that

the iterative solution of the SS-MRPT amplitude equations

is not a bottleneck. It is pertinent to mention that the per-

sistence of the intruder problem varies with the particular

MRPT approach. For instance, it has been demonstrated in

[64, 65] that NEVPT2 (second-order n-electron valence

state perturbation theory) [19–22] is inherently less sensi-

tive to this problem as compared with MRMP2 [9–12] and

CASPT2 [6–8]. In this context, we also mentioned the

observations of the convergence of MRPT, in particular the

CASPT method by Olsen and Fülscher [66]. A study of the

convergence of Møller–Plesset MRPT in CI spaces

restricted to single and double excitations from a CAS

reference has been reported by van-Dam and van-Lente

[67]. They argue for the use of the convergence of the

MRPT in this restricted space, as an indicator of the con-

vergence of the perturbation expansion in the full space.

A key issue in MRPT concerns the definition of a proper

zero-order Hamiltonian, H0 (rather H0
l).9 The efficacy and

generality of a perturbative method depends on the choice

of the unperturbed Hamiltonian. We use a type of refer-

ence-related Fock-like operator based on the concept of

multipartitioning scheme [57–59]. We employ the follow-

ing vacuum-dependent Fock operator [39–44]:

fl ¼
X

ij

f ij
core þ

X

u

Vju
iu �

1

2
Vuj

iu

� �
Dl

uu

" #
Ej

i

� �
ð4Þ

The operators E in curly brackets denote the normal

ordering with respect to the vacuum. In Eq. (4), u describes

both a doubly occupied and a singly occupied active orbital

in /l, and Dls are the densities in the CSF space labeled by

the active orbitals where i; j; � � � refer to spatial orbitals.

The Dls are computed first and stored in the fast memory

which are used in the construction of the reference space

Hamiltonian matrix elements and second-order pseudo

effective operators eH : All other density matrix elements

(say two and three body) are computed on the fly during

computation. As our H0 is always diagonal (as for MP

scheme), the zero-order Hamiltonian operator is: Hl
0 ¼P

i fl
ii Ei

i

� �
: For such a H0, the cluster amplitudes of par-

ticular classes are decoupled from other classes in the first-

8 In a unrelaxed (frozen) treatment, the updating of the nondynamical

correlation as a result of mixing of the virtual functions is not done,

assuming approximate additivity of the two effects and thus the

methods of frozen coefficients variety (unrelaxed version) may suffer

from the internal contraction of the wave function in the reference

space. The relaxed (internally decontracted) treatment, on the other

hand, dresses the effective operator in the active space, and the

diagonalization of this operator automatically relaxes the coefficients

of the model functions.

9 A general difficulty of MRPT is the choice of the zeroth-order

Hamiltonian. This is less straightforward than in the SR-based

Møller–Plesset perturbation theory, since in the multireference case

there is no one-electron Fock operator which is diagonal in the orbital

basis. Thus, the zeroth-order Hamiltonian is in general nondiagonal,

and a set of linear equations must be solved to determine the first-

order wave function. Alternatively, the off-diagonal elements of the

zeroth-order Hamiltonian can be neglected, but this may cause

additional errors and removes orbital invariance properties.
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order perturbation (for a detail discussion along these lines,

see [38]). It is also worth commenting that our partitioning

preserves the structure of the single-reference MPn series

(i.e., the direct terms have the same form) and because of

the presence of coupling terms, it leads to equations (Eq. 2)

that require an iterative solution. In a number of applica-

tions, it has been shown that the Fock operator in Eq. (4)

gives an acceptably good descriptions of the ground and

electronically excited states [39–44].

We have further scrutinized the quality of the computed

PESs through the computation of molecular spectroscopic

parameters. Such an attempt also probes the performance

of our SS-MRMPPT calculations in a more realistic way.

The calculations of PESs and the spectroscopic parameters

are sensitive to several factors, viz. (a) the effectiveness of

the method used to describe the dynamic and nondynamic

electron correlation effects in a balanced fashion, (b) the

quality of the basis set used in the calculations, and (c) the

accuracy of the fit or analysis employed to approximate

the PES in the subsequent calculation of the spectroscopic

constants. In addition, the number of points used in the PES

fitting may influence the accuracy of the calculation of the

spectroscopic parameters. From the data displayed in

[68]10 for HX systems [via the third-order Douglas–Kroll

(DK) relativistic CC theory with a series of correlation-

consistent basis sets including the largest set of atomic

basis functions that is technically feasible], it is clear that

the use of larger-size basis sets and the use of methods

capable to handle correction effects efficiently over the

entire energy surface are crucial in achieving spectroscopic

parameters with experimental accuracy. The energy surface

and equilibrium internuclear separation (Re), harmonic

frequency (xe), rotational constants (Be), centrifugal dis-

tortion constants (De), and dissociation energy (D0) of the

ground-state HX molecules have been investigated using

the SS-MRMPPT approach in combination with different

basis sets of Dunning et al. [69–71] (cc-pVQZ, cc-pV5Z

(-h), aug-cc-pVTZ, aug-ccpVQZ, aug-ccp5Z(-h) [h shell

was removed because used versions of GAMESS(US) do not

support h shells] for HF molecule, and aug-cc-pVDZ and

aug-cc-pVTZ for HCl and HBr molecules). Going beyond

the necessarily modest basis sets that are used in FCI

comparisons is obviously essential if meaningful compar-

isons are to be made with experiment. The basis sets used

(standard contracted variants) in this paper were taken

from. [72, 73].11 The equilibrium harmonic frequencies

xe, given essentially by the curvature of the PES at

Re, represent perhaps the most sensitive test of the quality

of the computed potentials. The calculated dissociation

energy (which strongly depends on the quality of the

energy calculated at a large internuclear separation) has

been computed by subtracting the energy at a large inter-

atomic distance from that at Re. It is important to note that

the determination of bond dissociation energies is of cru-

cial importance for any discussion of thermodynamic

equilibrium constants. Comparing the calculated values of

spectroscopic constants with the experimental values

(taken from Huber and Herzberg [74]) enables one to do

the following: (a) test the quality of the computed PES; and

(b) if some system exhibits a significant difference between

the calculated value and the experimental value, it can

provide a clue that there may be some peculiarity in the

computed PES. The other issue of this work is to assess the

performance of the SS-MRMPPT method, in particular,

whether in the presence of multireference character it

performs as well as the standard MR-based approach does,

and gives better results in situations in which the ‘gold

standard’ CCSD(T) is inadequate. Whenever possible, we

also compare the performance of SS-MRMPPT with that of

estimates obtained by previously published state-of-the-art

methods.12 In the applications of the SS-MRMPPT

method, molecular orbitals, two-electron integrals, the

core-Hamiltonian matrices have all been computed via

GAMESS(US) program package (a non-commercial

quantum chemistry package) [75, 76]. We also computed

the density matrix elements from GAMESS(US) package.

Both MO integrals and one-body density matrix elements

have been stored to the fast memory (two- and three-body

matrix elements are computed on the fly during calcula-

tions) and are then read by the SS-MRMPPT calculations.

We should be mentioned that the disk space required for

solving SS-MRMPPT amplitude equation is negligible in

comparison with that needed for storing two-electron

integrals. Thus, the time required to compute the SS-

MRMPPT energy is very small compared to the time

needed for the entire computation of the integral transfor-

mation, the CASSCF procedure, and the generation of the

two-electron integrals.

10 To the best of our knowledge, these spectroscopic results are the

most complete and accurate ones to this day.
11 See http://www.emsl.pnl.gov/forms/basisform.html.

12 To assess the comparative performances of electronic structure

methods from a perfectly quantitative standpoint, one needs to use the

same basis, the same kind of orbitals, and the same geometry.

Thereby, one can avoid, or at least attenuate, differences stemming

out of the theoretical artifacts while comparing the results. A rigorous

comparison of our results with other methods considered here,

however, is difficult due to the use of different basis sets. For this

reason, the quality of our comparison may not be appropriate. It

should be noted that, in this article, our aim is not to look at our

method only from the quantitative standpoint. Instead, we attempt to

put forth the more qualitative aspect of the method in terms of its

predictive power vis-a-vis other standard and established methods in

routine use. In view of this, we have also collected the values

provided by various methods with different basis and orbitals. To

judge our results qualitatively, we also consider the results of various

methods with different schemes just as a reference.
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We are now in position to discuss the layout of the

numerical strategy that we adopt to apply the SS-MRMPT

approach. As we have already mentioned, the entire set of

cluster amplitudes contained within operator Tl are seg-

mented in different classes (eleven in number see [38]) and

coupling between tl
l and tm

l exists when the amplitudes

belong to the same class and within the domain of same

excitation structure. For example, t pq
lab and t pq

mab
are coupled,

where following the customary terminology, (a, b) repre-

sents the inactive orbitals, and (p, q) are occupied and

unoccupied, respectively, in /l and /m. If u is identified as

an active orbital which is occupied both in /l and /m and v

is active unoccupied orbital in those functions, so that both

t pv
lau and t pv

mau are coupled through as they belong to the same

class and same excitation structure. We compute the cluster

amplitudes of each class with a given excitation structure

and incorporate its effect on the effective Hamiltonian

matrix, so that the cluster amplitudes are computed on the

fly and are not stored. So the overall computational effort

depends on the effort given for all such class. We will

discuss two of them here. We consider the two-body cluster

operators involving inactive hole and inactive particle

orbitals: some iterations are needed for the convergence of

t pq
lab (to include the effect of the coupling term) and this

class contributes to the diagonal terms of the effective

Hamiltonian. So the computational effort for this class

scales as nit*N*nd
2*nv

2 where nd and nv described the

number of doubly occupied and virtual orbitals, respec-

tively. Here, nit is the number of iteration needed for the

convergence of cluster amplitude (typically of the order of

10, though it depends on the class and structure of ampli-

tudes concerned). We take another class of cluster ampli-

tudes which involves active orbitals, say, t pv
lau: These

contribute to both diagonal and up to two-body off-diag-

onal matrix elements of the effective Hamiltonian. The

computational effort scales as nit*N*N*nd*nv*na
4 (na stands

for the number of active orbitals), provided the non-zero

two-body density matrix elements (D IJ
lm KL
¼ h/ljEIJ

KLj/mi;
where EKL

IJ ’s are spin-free excitation operator) are com-

puted a priori and stored in the fast memory.

The rest of the paper is organized as follows. The SS-

MRMPPT results for individual systems considered here,

as well as, the discussion of important general aspects that

emerged from our present measurements in the light of

previously reported values (wherever applicable or avail-

able) has been presented in Sect. 2. An emphasis is given

on the quality of the computed potentials in a broad range

of internuclear separations and on the computed spectro-

scopic constants. Spectroscopic constants (Re, xe and

xexe) have been computed using a standard Dunham

analysis [77, 78]. Then, the rotational constant (Be) and

centrifugal distortion constant (De) have been calculated by

the relations: Be ¼ 1
2lR2

e
and De ¼ 4B3

e

x2
e

respectively (for

details see [68]). In this section, we submit that the SS-

MRMPPT method is a robust and useful approach to the

electron correlation problem for cases where not only a

multireference but also single-reference formalisms are

appropriate. General discussions (regarding the overall

performance of the method, the special treatments of small

coefficients to avoid numerical instability in the working

equations of SS-MRPT theory, etc) form the contents of

Sects. 3 and 4 finally presents some concluding remarks.

2 Numerical applications and discussion

In our SS-MRMPPT calculations for HX systems, we

employ a CAS(2,2) [2 electrons, 2 orbitals] consisting of a

r bonding and a rH antibonding orbital throughout the

entire PES. This is the smallest model space that provides a

qualitatively correct description of the ground states of HX.

It is important to note that the essence of the MR-based

theory is to employ as small an active space as possible. It

is worth noting that for single-bond breaking, the variation

of MR character occurs as the bond is stretched and hence

offers a very effective avenue to examine the performance

of various methods in handling the electron correlation in

genuinely MR situations. For the ground-state HF, we have

also estimated the results at the complete-basis-set (CBS)

limit.13

2.1 Ground-state hydrogen fluoride [X1Rþ HF ]

We first consider the HF molecule. The bond breaking of

HF molecule has been previously studied with several

single and multireference methods [78–94]. In addition, a

precise experimental value is available for its different

spectroscopic constants [74]. Hence, this molecule is a

good model system for testing the performance of a new

method. Although the ground state of HF near the equi-

librium is dominated by a single configuration, however,

when the H–F bond is stretched, the ‘gold standard’

CCSD(T) (CC method with singles, doubles, and pertur-

batively corrected triples) starts to show significant errors

and is not able to produce a smooth PES of correct shape

[80–82, 87]. However, Hirata et al. [90, 91] have observed

that the performance of the CCSDT-R12 (R12-scheme-

13 Any ab initio calculation inevitably involves both the basis set

error (i.e., the error associated with the model employed) and the error

of the method itself (i.e., the intrinsic error due to the approximations

involved in the method). Thus, when comparing with the experiment,

the accuracy of a given post-Hartree–Fock method can only be

properly assessed when we can estimate the complete-basis-set limit.

This can be accomplished—at least partially—by observing the trend

of the computed results while systematically enlarging the basis set.
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based CC approach with singles, doubles, and triples) and

CCSDTQ-R12 (R12-scheme-based CC approach with sin-

gles, doubles, triples, and quadruples) methods is accept-

ably good. They have also demonstrated that the

performance of the method(s) goes down when the mag-

nitudes of the connected triples and quadruples contribu-

tions become significantly large. It is important to mention

the fact that when computing energy surfaces, it is their

shape that is of paramount importance, in addition to their

location on the absolute energy scale. These facts indicate

the clear benefit of using a genuine MR-based approach.

We have used aug-cc-pVTZ, cc-pVQZ, cc-pV5Z(-h),

aug-cc-pVQZ, and aug-cc-pV5Z(-h) basis sets [72, 73]

along with CAS(2,2) throughout the potential surface. The

1s core orbitals of F have been kept frozen in all calcula-

tions. Li and Paldus [80–82] have demonstrated that the

effect due to the core electrons is rather insignificant. In our

previous study [39–44], we have employed the smaller DZ,

6-31G** and cc-pVTZ basis sets in order to enable a

comparison with the full CI (FCI) results. We focus in the

present study only on the results for larger and physically

more meaningful basis sets with polarization orbitals.

To illustrate and quantify how well is the SS-MRMPPT

approach along with different well used perturbation

methods (published previously [88]) parallel to the FCI/6-

31G** PESs, the results are presented graphically in Fig. 1.

In the inset to this figure, we also plot the results of

intruder-free Brillouin-Wigner CC single–doubles

(BWCCSD) studies to envisage whether the SS-MRMPPT

method yields results in close agreement with MR-based

CC methods or not. We realize that the SS-MRMPPT/6-

31G** potential nicely reproduces the available FCI

potentials. Even with the minimal two-electron/two-orbital

active space, SS-MRMPPT computations produce energies

that are very close to those obtained with the computa-

tionally very expensive BWCCSD ones over the entire

energy surface, which illustrates another useful measure for

the success of SS-MRMPPT methodology. As shown in

Fig. 1, the results deteriorate appreciably for the MP2/6-

31G** at large distances. Dutta-Sherrill [86] found the poor

performance of CCSD(T) with 6-31G** basis. Li and Pal-

dus [80–82] have also noted that the CCSD(T) method

does not even produce a PES having a correct shape. The

poor performance of MP2 and CCSD(T) emerges from the

inherent inability of the nondegenerate perturbation theory

to deal with cases of strong MR nature as is pronounced at

large bond distances. The results of HF system due to Li

and Paldus [80–82] clearly shown that all computationally

feasible SR-based correlated methods are unable to prop-

erly describe even the simplest bond breaking situation: the

breaking of a single H–F bond. The graphical results given

in Fig. 1 clearly indicate the superior performance of

SS-MRMPPT relative to both SR- and MR-based MP2

methods. As is evident from the Fig. 1, our SS-MRMPPT/

6-31G** calculations produce a much better energy surface

in terms of its parallelism and closeness to the FCI

potential (match full CI very closely around equilibrium

and near dissociation which leads to very favorable shape

of the PES) than do the 3 reference functions based

BWPT2 (multireference, state-specific, second-order,

Brillouin-Wigner perturbation theory) and BWPT2corr

(posteriori correction for the terms which scale nonlinearly

with particle number)14 estimates with the same basis over

the entire spectrum of nuclear separations considered here.

Figure 1, also shows that the SS-MRMPPT essentially

reduces to the MP2 findings around equilibrium regions,

and properly corrects the inadequate behavior of MP2 in

MR situations encountered in the dissociative region. The

above-mentioned facts speak amply in favor of the SS-

MRMPPT.

In Fig. 2, we examine the total energies of X1Rþ HF along

the bond breaking coordinate obtained by the SS-MRMPPT

scheme with cc-pVQZ and cc-pV5Z(-h) basis sets. We have

also employed the SS-MRMPPT method to compute PESs

for the HF system using basis sets of aug-cc-pVQZ and aug-

cc-pV5Z(-h) quality, as one may expect the diffuse functions

to be of high importance for correct description of the HF

molecule in wide range of inter-nuclear distances. In this

14 Although formally simple in conjunction with an explicit intruder-

free nature, the BWPT2 method due to Hubač et al. [23–25] is not

rigorously size-extensive. In the first applications of BWPT2, no

correction to the size-inextensivity was attempted. In a later

modification, an attempt was made to expand the target energy in

terms of the CASCI energy (by way of expanding the target energy in

terms of an unperturbed Rayleigh–Schrödinger-like energy) to get rid

of the inextensivity. This has the danger of bringing back the intruders

and hence care then has to be exercised to bypass intruders.
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Fig. 1 Dissociation energy surfaces of the HF molecule with the

6-31G** basis set using SS-MRMPPT/CAS(2,2) along with the

corresponding FCI results. We compare our results to those obtained

via other allied methods
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way, we examine in Fig. 2 the basis set dependence of

potential surfaces obtained at the SS-MRMPPT/CAS

(2,2)level. Figure 2 shows that the topology of potential

surface near the dissociation region depends considerably on

the size of basis set. Therefore, such a study lends an addi-

tional way of assessing the effects of diffuse basis functions

on the spectroscopic constants of HF. It is important to note

that the SS-MRMPPT method provides a balanced descrip-

tion of the energy surface with a correct shape over the whole

region of internuclear distances. Our computed PES gives a

qualitative similar impression of the energy surfaces of HF at

MR exp T and SRMRCC levels [89]. The energy surfaces

drawn in Fig. 2 also clearly illustrate that the topological

behavior of dissociation of X1Rþ HF is virtually identical

with the calculations by CR-CCSD(T)/DZ [87], CCSDT-

R12/aug-cc-pVDZ [90, 91] and CASCC/aug-cc-pVTZ [94]

approaches. As can be observed in Fig. 2, the energy of the

ground state becomes even smoother for the larger basis sets,

say, cc-pV5Z(-h) and aug-cc-pV5Z(-h) showing the impor-

tance of larger basis sets. To explore the issue of smoothness

of energy surface with the size and nature of the basis sets

along with the nature of the orbitals, and definition of zero-

order Hamiltonian in more detail, a thorough sensitivity

analysis is called for. It is worth mentioning in this regard

that CR-CCSD(T) [completely renormalized CCSD(T)] and

CCSDT-R12 provide considerable improvements in the

description of ground-state energy surface of HF when

compared with the ‘gold standard’ CCSD(T) method. Li and

Paldus [80–82] found that CCSD(T) utterly fails for large

H–F separations.

To assess the overall quality of the computed energy

surface, it is very instructive to compute spectroscopic

constants and these have been assembled in Table 1 with

the various correlation-consistent basis sets including cc-

pV5Z(-h) one and frozen core electrons. To calibrate our

spectroscopic results, we compare our present SS-

MRMPPT values with the available results obtained at

various sophisticated levels of electron correlation calcu-

lations. As a criterion for the effectiveness we also use the

comparison of the calculated spectroscopic parameters

with the experimental values.

From the previously published data due to Klopper et al.

[92]15 (computed at CCSD(T) level including a first-order

relativistic correction obtained from an analytical evalua-

tion of the first-order direct perturbation energy at the

CCSD level in conjunction with large one-particle basis

sets), it is found that the overall accuracy of the spectro-

scopic constants for the HF system is clearly dominated by

electron correlation and basis set truncation effects, while

the relativistic effects are of minor importance. Although

we observe that the shapes of PESs generated via CASS-

CF(2,2) and SS-MRMPPT/CAS(2,2) methods are very

similar, as shown in the table, the dynamical correlation

effects on the spectroscopic properties of HF are notice-

able. The computed spectroscopic constants are in good

agreement (in conjunction with a favorable trade-off

between accuracy and computational cost) with the previ-

ously published state-of-the-art calculations. We now

focus on a comparative account of our results. The analysis

emerged from the results given in Table 1 may be sum-

marized as follows:

1. In general, the SS-MRMPPT in conjunction with

larger basis sets [say cc-pVQZ, cc-pV5Z(-h), aug-cc-

pVQZ, and aug-cc-pV5Z(-h)] results differ very

little.

2. The SS-MRMPPT results with different basis sets

show how increasing the size of basis sets affects the

accuracy of the evaluation of the spectroscopic

constants. Overall, our estimated spectroscopic con-

stants for HF system move toward the experimental

measurements with the increasing size of the basis

set. In general, the performance of our SS-MRMPPT

method is converging in nature with the size of basis

sets.

3. The Re, xe, xe xe, Be, De and D0 values we obtain

for the X1Rþ HF are of 0.9175 Å, 4133.79, 88, 20.77,

0.00210 cm-1, and 158.88 (kcal/mol) at the CBS16

15 In this article, authors study the difference between the various

direct perturbation theory and Pauli perturbation method for the HX

(X = F,Cl, Br, and I) molecules in order to investigate the relative

importance of relativistic effects, higher-order electron correlation

effects, and remaining basis sets effects.
16 To obtain the results at CBS limit, we have used the same scheme

as done by Hirata et al. [68].
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Fig. 2 SS-MRMPPT potential energy surface of X1Rþ HF obtained

with the cc-pVQZ, cc-pV5Z(-h), aug-cc-pVQZ, and aug-cc-pV5Z(-h)

basis sets. Figure illustrates the basis set dependence of potential

surfaces obtained at the SS-MRMPPT/CAS(2,2) level
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limit, respectively. The corresponding complete-cor-

relation CBS (based on the cc-pVDZ-DK, cc-pVTZ-

DK, and cc-pVQZ-DK basis sets) results with scalar

relativistic and spin-orbit corrections [68] are

0.9167 Å, 4148, 93, 20.961 cm-1, and 134.9 kcal/

mol. Thus, the spectroscopic constants obtained with

the SS-MRMPPT/CBS are also in good accordance

with the values obtained by the computationally

expensive calculations due to Hirata et al. [68].

4. The spectroscopic constants obtained by SS-

MRMPPT with cc-pV5Z(-h) and aug-ccpVXZ

[XZ = QZ and 5Z(-h)] basis sets (and SS-MRMPPT/

CBS) and CCSD(T)?DPT(CCSD)/aug-cc-pCV5Z

[92] calculations are consistent with each other.

Table 1 Spectroscopic constants [equilibrium bond length Re(Å), vibrational frequency xe(cm-1), anharmonicity constant xe xe (cm-1),

rotational constant Be(cm-1), centrifugal distortion constants De (cm-1), and dissociation constant D0(kcal/mol)] for X1Rþ HF system

Ref. Basis Methods Re xe xe xe Be De D0

This work aug-cc-pVTZ CASSCF(2,2) 0.9158 4,233.48 105 20.36 0.00188 112.90

cc-pVQZ CASSCF(2,2) 0.9148 4,253.50 99 20.09 0.00179 113.45

cc-pVTZ SS-MRMPPT(2,2) 0.9220 3,915.07 101 20.57 0.00227 138.59

cc-pVQZ SS-MRMPPT(2,2) 0.9182 4,149.16 98 20.74 0.00207 152.20

cc-pV5Z(-h) SS-MRMPPT(2,2) 0.9178 4,140.10 92 20.76 0.00209 156.40

aug-cc-pVTZ SS-MRMPPT(2,2) 0.9216 4,153.44 94 20.59 0.00202 156.09

aug-cc-pVQZ SS-MRMPPT(2,2) 0.9200 4,112.90 99 20.65 0.00208 156.81

aug-cc-pV5Z(-h) SS-MRMPPT(2,2) 0.9200 4,119.02 99 20.18 0.00200 156.50

D1 CBS 0.001 1.8 2.12 0.2 0.00006 14.77

SS-MRMPPT(2,2) 0.9175 4,133.79 88 20.77 0.00210 158.88

D2 0.0007 4.51 2.0 0.19 0.00005 17.25

Ref. [85] cc-pVTZ H3rd
v 0.9155 4,184.9 118.4

Ref. [93] 6-311G** MRMP2 0.919 4,143 131.35

APSG-PT 0.918 4,038 134.72

MP-pMCPT(APSG) 0.910 4,280 169.91

MP-uMCPT(APSG) 0.916 4,160 133.49

Ref. [99] aug-cc-pVDZ MRCI?Q 0.9260 4,038.1 133.84

CBS MRCI?Q 0.9165 4,143.2 140.50

Ref. [78] AV5Zuc CCSD(T) 0.9173 4,142.21 89.828 –

best calculate 0.9171 4,138.99 –

Refs. [83, 94] aug-pVDZ CCSD(T) 0.924(0.924) 4,084 (4,082) 134.6 (134.0)

aug-pVTZ CCSD(T) 0.921(0.921) 4,124 (4,123) 139.3 (138.7)

Refs. [80-82] cc-pVQZ 4R RMR-CCSD(T) 0.9163 4,160.4 89.16 20.97 –

cc-pVQZ CR-CCSD(T) 0.9158 4,169.7 289.04 0.99 –

cc-pVQZ CCSD(T) 0.9162 4,162.1 89.00 20.97 –

Ref. [94] aug-cc-pVTZ CAS(2,2)CCSD 0.9194 4,138.70 89.96 0.00211 139.97

CAS(2,2)CISD?Q 0.9194 4,127.42 92.11 0.00212 139.74

Ref. [68] cc-pVTZ DK3-CCSDT 0.9190 4,159 93 20.85 0.00210 128.68

DK3-CC 0.9167 4,148 93 20.96 0.00215 134.9

Ref. [92] aug-cc-pCV5Z CCSD(T)?DPT(CCSD) 0.9167 4,144 90.0 20.96

Ref. [74] Experiment 0.9168 4,138.30 89.88 20.96 0.00215 141.63

See text for details

H3rd
v : Results obtained from a seven orbital reference space containing three occupied and four unoccupied valence orbitals.

Refs. [83, 84]: Values within the parenthesis correspond to the calculations made by the Dirac-Coulomb-(Gaunt) Hamiltonian

DK3-CC: Theoretical best estimate obtained from a combination of DK3-CCSD, DK3-CCSDT, DK3-CCSDTQ with the cc-pVDZ, cc-pVTZ,

and cc-pVQZ basis sets [68]

D1: Values correspond to the deviation of SS-MRMPPT/cc-pV5Z(-h) with respect to the experimental results

D2: Values correspond to the deviation of SS-MRMPPT/CBS with respect to the experimental results
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5. The errors of our computed spectral constants at CBS

limit with respect to the experimental results are:

Re = 0.0007 Å, xe = 4.51 cm-1, xe xe = 2.0 cm-1,

Be = 0.19 cm-1, and De = 0.00005 cm-1 which

indicates the quality of our results. The best agree-

ment with experiment [74] is achieved with the

cc-pV5Z(-h) basis set. It should be mentioned in this

context that the SS-MRMPPT(2,2) method signifi-

cantly overestimates D0 (17.25 kcal/mol), in com-

parison with the experimental results and those from

established theoretical methods. At present, the

reason for this error is not clear to us. However, to

eliminate, or at least, to attenuate the remaining error

of SS-MRMPPT we have to implement localized

orbitals (as the method is not orbital invariant and

hence leads to size-consistency error with delocalized

orbitals). Changing the definition of the Fockian of

Eq. (4) and the expression of the renormalization

term in Eq. (2) may also be expected to affect the

patterns of the surface. A recent observation due to

Das et al. [95], along with the desire to enhance the

accuracy of the results, we consider it worthwhile to

undertake an extensive survey of the SS-MRPT

method with localized set of active orbitals and we

expect to come back to this problem in our future

publications.

6. The deviations of our SS-MRMPPT results from

experimental ones never exceed 0.005 Å for Re,

223 cm-1 for xe, 11 cm-1 for xe xe, 0.39 cm-1 for

Be, 0.00012cm-1 for De and 14.46 kcal/mol for D0.

7. In general, the SS-MRMPPT/CBS, MRCI?Q/CBS,

CCSD(T)/AV5Zuc, CR-CCSD(T)/cc-pVQZ, and 4R-

RMR-CCSD(T)/cc-pVQZ results differ very little.

8. The SS-MRMPPT geometries and vibrational fre-

quencies are in close agreement with H3rd
v (third-

order effective valence shell Hamiltonian approach: a

complete active space MRPT approach) [85].

9. Equilibrium bond distance and frequency as calcu-

lated by the MP-uMCPT due to Surján et al. [93]

agree well with our predictions. However, D0 value is

not well reproduced by the MP-uMCPT scheme. The

harmonic frequency and dissociation energy are not

well reproduced by MP-pMCPT [93].

10. In the case of a aug-ccpVTZ basis set, the

CAS(2,2)CISD[?Q] and CAS(2,2)CCSD calcula-

tions [94] yield more accurate spectroscopic con-

stants than does SS-MRMPPT/CAS(2,2).

Considering an overall performance, we can thus say

that for the ground-state HF molecule, SS-MRMPPT

method performs well even at the CBS limit.

2.2 Ground-state hydrogen chloride [X1RþHCl]

We next consider the performance of SS-MRMPPT for the

HCl molecule, using the current generation results as a

benchmark. Various established wave function-based

methods have been applied to investigate the HCl molecule

[68, 96–100]. Here, we have used aug-cc-pVDZ and aug-

cc-pVTZ basis sets [72, 73]. Although in this case the use

of a much larger basis is more in order to obtain experi-

mental accuracy, the present basis sets are reasonably

adequate to enable us to draw useful conclusions regarding

the applicability of the SS-MRMPPT method in PES

computations. In our calculations, the Be-like core of Cl

has been kept frozen. The SS-MRMPPT PESs in con-

junction with aug-cc-pVDZ and aug-cc-pVTZ bases for the

X1Rþ HCl have been depicted in Fig. 3. This figure clearly

depicts the effect of the expansion of the basis set on the

computed energy surfaces. It can be seen that the SS-

MRMPPT method with different basis sets works well for

the dissociation of the X1Rþ HCl molecule. Above all,

topology of the SS-MRMPPT surface is almost identical to

those of the corresponding highly accurate CCSDT and

CR-CCSD(T) calculations with aug-cc-pVTZ basis set

(where the core orbitals correlating with the 1s, 2s, and 2p

shells of Cl have been kept frozen, and the RHF orbitals

have been employed) due to Piecuch et al. [100] (see

Fig. 3). As we can see, the SS-MRMPPT methods yield a

good PES that is ‘almost parallel’ to the surface obtained

from the CCSDT and CR-CCSD(T) methods. At this point,

we should recall that the CCSDT and CR-CCSD(T)
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Fig. 3 Potential energy surfaces of the X1Rþ HCl obtained with the

aug-cc-pVDZ and aug-cc-pVTZ basis sets. We have also displayed

the computationally demanding CCSDT and CR-CCSD(T) results

with aug-cc-pVTZ basis set due to Piecuch et al. [100]. The SS-

MRMPPT surface has been adjusted by 0.1 (a.u.)
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approaches are much more expensive than the

SS-MRMPPT calculations. As far as the computational

cost is concerned, the shape of the SS-MRMPPT surface is

competitive with the results of CCSDT and CR-CCSD(T)

ones. From the figure, it is clear that there is no unphysical

hump along the elongation coordinates of the SS-

MRMPPT energy surface of X1Rþ HCl system. It is worth

mentioning that Piecuch et al. [100] reported that the well-

pronounced nonphysical hump has been found in the

CCSD(T) [CCSD perturbatively corrected for triples] sur-

face at *2.5 Å. This inability of the CCSD(T) method is

primarily due to the breakdown (or at least inadequacy) of

the SR perturbation theory in the presence of MR nature.

Thus, our SS-MRMPPT removes or at least attenuates the

failure of CCSD(T) in MR situations at expense of low

computational cost.

The spectral or molecular constants calculated from the

SS-MRMPPT surfaces for two basis sets are given in

Table 2. For the sake of completeness of comparison we

have also tabulated the corresponding experimental values

[74, 101, 102] in Table 2 along with other available theo-

retical estimates. The results of Hirata et al. [68] and of

Klopper et al. [92] are very useful to judge the accuracy of

our present SS-MRMPPT results. The main features of the

results given in Table 2 may be summed up as follows:

1. Inspection of Table 2 shows that the equilibrium bond

distance and the dissociation energy calculated by SS-

MRMPPT decrease with increase in the size of basis

set whereas the vibrational frequency increases. Thus,

the calculated results are systematically convergent to

experimental data with respect to the size of basis sets.

Table 2 Spectroscopic constants [equilibrium bond length Re(Å), vibrational frequency xe(cm-1), anharmonicity constant xe xe (cm-1),

rotational constant Be(cm-1), centrifugal distortion constants De (cm-1), and dissociation constant D0(kcal/mol)] for X1Rþ HCl system

Ref. Basis Methods Re xe xe xe Be De D0

This work aug-cc-pVDZ SS-MRMPPT(2,2) 1.283 2,936 50 10.37 0.00052 110.6

aug-cc-pVTZ SS-MRMPPT(2,2) 1.276 2,964 49 10.49 0.00053 107.3

D 0.001 27 4 0.10 0 0.9

Ref. [97] ECP-SACASSCF-CI 1.2874 2,983

MRD-CI 1.2806 2,961

CEPA 1.2806 2,977

Ref. [98] 6-311G??(3df,3p) CAS-BCCC4 1.273 2,995 104.0

Ref. [99] aug-cc-pVDZ MRCI?Q 1.2938 2,966.9 100.29

aug-cc-pVTZ MRCI?Q 1.2790 2,975.5 104.18

CBS MRCI?Q 1.2769 2,978.2 106.67

Ref. [103] cc-pVTZ CAS-CI 1.2777 2,984.2 51.4 10.54 104.7

cc-pV5Z CAS-CI 1.2758 2,992.6 52.0 10.57 105.5

Ref. [68] cc-pVQZ DK3-CCSD 1.276 3,010 55 10.566 0.00052 99.39

cc-pVTZ DK3-CCSDT 1.281 2,976 56 10.486 0.00052 98.00

cc-pVDZ DK3-CCSDTQ 1.297 2,967 56 10.231 0.00049 91.09

DK3-CC 1.278 2,991 55 10.541 0.00052 101.7

Ref. [92] aug-cc-pCV5Z CCSD(T)?DPT(CCSD) 1.2737 2,988.2 46.4 10.61

Refs. [83, 84] aug-pVDZ CISD?Q 1.292 (1.292) 2,972 (2,967) 97.9 (96.9)

aug-pVTZ CISD?Q 1.278 (1.278) 2,999 (2,995) 103.8 (102.8)

aug-pVDZ CCSD(T) 1.292 (1,292) 2,971(2,967) 98.4 (97.3)

aug-pVTZ CCSD(T) 1.279 (1.279) 2,991(2,988) 105.0 (103.9)

Ref. [104] aug-pVTZ MBPT(4)?R 1.282 3,009

Ref. [96] aug0-cc-pV(n?d)Z W4(CCSDTQ) 1.274 2,991.50

Ref. [102] Experiment 102.21

Ref. [101] Experiment 1.2746 2,989.7 106.4

Ref. [74] Experiment 1.2746 2,991 53 10.593 0.00053 106.4

See text for details

MRCI?Q: multireference configuration interaction ? Davidson correction. CAS-CI: Full-valence complete active space (CAS)-based

multireference configuration interaction DK3-CC: Theoretical best estimate obtained from a combination of DK3-CCSD, DK3-CCSDT,

DK3-CCSDTQ with the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets [68]

Refs. [83, 84]: Values within the parenthesis correspond to the calculations made by the Dirac-Coulomb-(Gaunt) Hamiltonian. D: Corresponds to

the deviation of SS-MRMPPT/aug-cc-pVTZ with respect to the experimental results
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2. The spectral constants such as Re, xe, xe xe, Be, De, and

D0 calculated with the SS-MRMPPT(2,2)/aug-cc-pVTZ

model reproduce the experimental data [74] within 0.001

Å, 27, 4, 0.10, 0 cm-1, and 0.9 kcal/mol, respectively.

3. The differences of our SS-MRMPPT(2,2)/aug-cc-pVTZ

values with respect to the best estimated results (DK3-CC)

due to Hirata et al. [68] are not very significant (such as

Re = 0.002 Å, xe = 27 cm-1, xe xe = 6 cm-1, Be =

0.05 cm-1, De = 0 cm-1, and D0 = 5.6 kcal/mol).

4. From the values of the molecular constants of X1Rþ

HCl calculated by Visscher et al. [83, 84] using

various non-relativistic and relativistic methods, it is

clear that the calculated molecular constants show very

little change upon inclusion of relativity. It is apparent

that our computed Re and xe are in very satisfactory

agreement with the CCSD(T) and CISD?Q results of

Visscher et al. [83, 84] illustrating the accuracy of the

SS-MRMMPT method.

5. As is evident from the table, the SS-MRMPPT

molecular constants are in line with previous compu-

tations of MRCI?Q [99].

6. Our results are in good agreement with the MRD-CI

(multireference double-excitation configuration inter-

action) as well as SA-CASSCF-CI with ECP basis sets

(effective core potentials with state-averaged CASS-

CF-CI) and are very close to CEPA (coupled-electron

pair approximation) methods [97].

7. It is interesting to note that CAS-BCCC4 (block

correlated CC method with a CASSCF reference

function with truncation up to the four-block correla-

tion level) [98] predictions listed in Table 2 are in

close agreement with our computed results.

8. Table 2 also shows that our SS-MRMPPT spectro-

scopic parameters are in qualitative agreement with

full-valence complete active space-based multirefer-

ence configuration interaction (CAS-CI) results

[Re = 1.2751 Å, and D0 = 105.7 kcal/mol] due to

Woon and Dunning [103] at the cost of low compu-

tational effort. The dimension of CAS used in their CI

calculations is larger than ours CAS(2,2).

9. The computed molecular constants via SS-MRMPPT/

aug-cc-pVTZ calculations are also in good agreement

with the results of Klopper et al. [92] performed at full-

blown computationally expensive CCSD(T)(Full)/aug-

ccpV5Z?DPT(CCSD)level. The difference between

these two calculations is around Re = 0.002 Å, xe =

24 cm-1, xe xe = 2.6 cm-1, and Be = 0.12 cm-1.

2.3 Ground-state hydrogen bromide[X1RþHBr]

The spectroscopic information about HBr would be helpful

for monitoring the ozone layer depletion, as this molecule

plays an important role in the depletion mechanism. In

metrology, transition frequencies of this molecule can be

used to calibrate the spectrometers and tunable laser

devices. Since HBr plays an important role in the depletion

mechanism, the information on this molecule would be

helpful for monitoring the ozone layer depletion. Hence, it

is not a surprise that a number of theoretical [68, 83, 84,

104–107]17 (for an excellent illustration of the performance

by the various approaches for HBr see [108]) and experi-

mental [74, 109, 110] investigations have been carried out

for the X1Rþ HBr molecule in the past several years. Of

these investigations, however, only a few experiments and

theories are involved in evaluating the ground-state spec-

troscopic properties of X1Rþ HBr. The spectroscopic

properties of the HBr molecule are significantly influenced

by relativistic effects and electron correlation. Thus, it is

very constructive to demonstrate the capability of the (non-

relativistic) SS-MRMPPT method in calculating the com-

plete PES of the X1Rþ HBr molecule. For the HBr mole-

cule, we use basis sets of a aug-cc-pVDZ and aug-cc-pVTZ

quality. In our post mean-field calculations, we do not

correlate the Ne-like core on Br. Over the internuclear

distance range considered here, the obtained SS-MRPT

energy surface is both smooth and completely convergent

indicating the robustness of the method.

Table 3 is a compendium of results for various methods

including our present SS-MRMPPT ones. In Table 3, we

also include the results of relativistic calculation by other

methods to show the influence of relativity. A comparison

with the all-electron CCSD(T)/cc-pV5Z-DK results [107]18

is also shown in Table 3. The relative qualities of our

computed results in the case of the HBr molecule may be

addressed as follows:

1. We observe that the SS-MRMPPT/aug-cc-pVTZ mod-

ulates the SS-MRMPPT/aug-cc-pVDZ spectroscopic

constants (except dissociation energy) by just the

adequate amount toward the experimental data.

2. The errors of our computed Re, xe, xe xe, Be, De and D0

with respect to the experimental values are 0.002Å,

40.03 cm-1, 4 cm-1, 0.04 cm-1, 0.00002 cm-1 and

17 The results reported in this paper provide very accurate and

complete investigations on the molecular parameters of the X1Rþ

HBr when compared with the previous theoretical estimations. Their

results almost perfectly conform to the available experimental

measurements.
18 In this paper, Peterson et al. performed the D0, Re, xe and xe xe

calculations by the CCSD(T) method with a series of correlation-

consistent basis sets in conjunction with small-core relativistic

pseudopotentials, aug-cc-pVnZ-PP (n = 2, 3, 4, 5). In order to assess

the impact of the pseudopotential approximation on the calculated

properties, they also made the all-electron CCSD(T) Douglas–Kroll–

Hess calculations using the correlation-consistent quintuple basis set

augmented with diffused functions, aug-cc-pV5Z-DK.
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6.51 kcal/mol, respectively. The corresponding errors

for DK3-CC [68] are 0.001 Å, 14, 2, 0.0, 0.0001 cm-1

and 4.14 kcal/mol, respectively. The deviations of

Re, xe, and D0 provided by CCSD(T)/aug-cc-pV5Z-

DK scheme [107] from the experiment values are

0.005 Å(overestimated), 2.98 cm-1(underestimated),

and 1.14 kcal/mol (underestimated), respectively. The

deviations of MRCI/aug-cc-pV5Z values [108] from

the experimental data are: Re = 0.005 Å, xe = 8.68

cm-1, and D0 = 0.18kcal/mol. It should be mentioned

that the full-valence CASSCF has been employed by

Shi et al. [108] as the reference wavefunction for their

MRCI calculations.

3. Visscher et al. [83, 84] have observed that the

inclusion of relativistic effect leads to a weakening

of the bond by about 0.002 Å, leading to a decrease in

the calculated harmonic frequencies by approximately

14 cm-1 and dissociation energies by about 4 kcal/mol

for X1Rþ HBr in the case of MP2, CISD, CISD?Q,

and CCSD(T) methods. Keeping in mind the differ-

ences in relativistic treatments, basis sets, and corre-

lation methods, their results and our SS-MRMPPT

results are in acceptably good agreement.

4. From Table 3, we see that the spectroscopic parame-

ters provided by the SS-MRMPPT results are in

relatively good agreement with the computationally

expensive CCSD(T), CCSDT, and MRCI results.

5. The deviations of SS-MRMPPT/aug-cc-pVTZ from the

best estimated complete-correlation, complete-basis-set

results of Hirata et al. are Re (Å) = 0.003, xe

(cm-1) = 26, xe xe = 2 (cm-1), Be (cm-1) = 0.27, De

(cm-1) = 0.00001 and D0(kcal/mol) = 10.65.

6. Table 3 also shows the results for the HBr molecule

obtained by using aug-cc-pVTZ basis set at the SS-

MRMPPT level are in promising agreement with the

CCSD(T)/(Full)?DPT(CCSD) findings [92] as is

evident from their deviations: Re (Å) = 0.001, xe

(cm-1) = 11, xe xe = 1.7, Be(cm-1) = 0.09.

7. Our SS-MRMPPT/aug-cc-pVTZ Re, xe and D0 results

are in quite a good agreement with the CCSD(T)/aug-

cc-pV5Z-DK [107] data of 1.4189, 2646.9, and 92.78,

respectively. In the SS-MRMPPT(2,2)/aug-cc-pVTZ

model, the equilibrium bond length underestimates the

experimental one by 0.002 Å, whereas the frequency

and dissociation energy are overestimated over the

experimental measurements by ^40 cm-1 and 6.51

kcal/mol, respectively.

8. The molecular constants calculated by Lee and Lee

[111] [using Kramers’ restricted MP2(KRMP2)] are

Re = 1.411 Å, xe = 2702 cm-1, and D0 = 83.5kcal/

mol. Their calculated Re and xe are in line with our

results. The KRMP2 dissociation energy is

significantly lower than our calculated value with

respect to the experimental value.

9. The deviations of the SOF-CCSDT/TZ+DSO (SOF-

CCSDT/TZ with 18 correlated electrons) spectral

constants relative to the experiment are Re = 0.0001

(0.0002)Å, xe = 8.43 (14.93) cm-1, and D0 = 3.46

(2.08) kacl/mol (see [106]). The corresponding devi-

ations provided by our SS-MRMPPT/aug-cc-pVTZ

calculations are 0.002Å, 40.03 cm-1, and 6.51 kacl/

mol, respectively.

The above analysis (considering an overall perfor-

mance) convincingly reveals that the computed spectro-

scopic constants are generally less accurate than for HCl

and HF with respect to the corresponding experimental

ones. It appears that the aug-cc-pVXZ basis sets for Br

behave somewhat different from the aug-cc-pVXZ basis

sets for F and Cl. Not only since the aug-cc-pVXZ sets for

Br seem to be less accurate than the corresponding for F,

but also in series of diatomics HF, HCl, and HBr, relativ-

istic effects become more and more important and adequate

descriptions of the systems containing heavy elements such

as bromine require a relativistic electronic structure

approach, we expect the evaluated spectroscopic constant

for HBr to be less close to the experimental values than for

HCl and HF.

In order to investigate the impact of the scalar relativ-

istic corrections on the spectroscopic constants of HBr,

Yockel and Wilson [112] have performed the CCSD(T)

calculations in combination with the DK contracted cor-

relation-consistent basis sets and small-core relativistic

pseudopotentials with the correlation-consistent polarized

valence basis sets. The Re and D0 values they have

obtained for the ground-state HBr at the aug-cc-pV5Z-PP

basis set are of 1.419 Å and 85.39 kcal/mol, respectively.

Although the harmony of our Re value with Yockel and

Wilson [112] one is very good, the deviation of D0 value is

noticeable. Overall, the entries assembled in the table

indicate that the SS-MRMPPT investigations on the X1Rþ

HBr are reliable and acceptably accurate. This is caused by

the correct shape of the PES provided by SS-MRMPPT

calculations. The SS-MRMPPT equilibrium bond length as

well as dissociation energy increase, whereas the frequency

decreases with an increase in the size of the basis set. We

also found that an elongation of the bond is accompanied

by a reduction of the harmonic frequency due to the

increase of basis size. Klopper et al. [92] have stated that

although the relativistic effects are larger for HBr than HF

and HCl, the incompleteness errors inherent in the corre-

lation treatment and truncation of one-particle basis set are

seen to dominate the overall deviation of molecular

parameters from the experimental ones.
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3 General discussion

The calculated values of the dissociation energy via SS-

MRMPPT computations exhibit the trend HF [ HCl [
HBr1 , as is also observed experimentally, as it should be.

From our present computations, it is quite evident that the

estimated equilibrium bond distances via SS-MRMMPPT

agree well with the experimental trend for the HX systems,

that is, RH–Br [ RH–Cl [ RH–F.

The results (vide supra) unequivocally suggest that the

SS-MRMPPT approach can provide a quite well-balanced

description of energetics of electronic states along bond

breaking coordinates for this class of chemical species as

the differences between the results of the SS-MRMPPT and

latest generation high-level methods are acceptably small

for all species studied. This can be traced back to the fact

that the wave function of a diatomic hydride with its bond

significantly stretched assumes a two-determinant

Table 3 Spectroscopic constants [equilibrium bond length Re(Å), vibrational frequency xe(cm-1), anharmonicity constant xe xe (cm-1),

rotational constant Be(cm-1), centrifugal distortion constants De (cm-1), and dissociation constant D0 (kcal/mol)] for the ground state of X1Rþ

HBr system

Ref. Basis Methods Re xe xe xe Be De D0

This work aug-cc-pVDZ SS-MRMPPT(2,2) 1.402 2,724 49 8.55 0.00033 94.1

aug-cc-pVTZ SS-MRMPPT(2,2) 1.412 2,689 49 8.43 0.00033 96.9

D 0.002 40.03 4 0.04 0.00002 6.51

Ref. [106] TZ SO MRCISD (8) 1.4187 2,634.9 86.94

TZ SO MRCCSD (8) 1.4193 2,630.6 86.70

TZ SOF CCSDT (18) 1.4142 2,663.9 92.47

TZ SOF CCSDT (18)?DSO 1.4143 2,657.4 86.93

Ref. [108] aug-cc-pV5Z MRCI 1.4195 2,642.68 90.57

Ref. [107] aug-cc-pVDZ-PP CCSD(T) 1.4290 2,641.4 46.7 88.17

aug-cc-pV5Z-PP CCSD(T) 1.4190 2,646.3 44.9 92.78

aug-cc-pV5Z-DK (all-

electron)

CCSD(T) 1.4189 2,646.9 45.0 92.78

Refs. [83,

84]

aug-pVDZ CISD?Q 1.429

(1.427)

2,655

(2,641)

88.6 (84.8)

aug-pVTZ CISD?Q 1.421

(1.419)

2,662

(2,646)

91.1 (87.2)

aug-pVDZ CCSD(T) 1.429

(1.427)

2,659

(2,646)

89.0 (85.2)

aug-pVTZ CCSD(T) 1.421

(1.419)

2,660

(2,645)

92.0 (88.1)

Ref. [104] aug-pVTZ MBPT(4)?R 1.421 2,693

Ref. [105] Basis1 Relativistic CI 1.455 2,645 85.8

Ref. [68] cc-pVTZ DK3-CCSD 1.418 2,657 46 8.422 0.00034 88.09

cc-pVDZ DK3-CCSDT 1.432 2,632 48 8.253 0.00032 83.78

cc-pVTZ DK3-CCSDT 1.421 2,634 47 8.392 0.00034 89.32

cc-pVDZ DK3-CCSDTQ 1.433 2,631 48 8.251 0.00032 80.02

DK3-CC 1.415 2,663 47 8.457 0.00034 86.25

Ref. [92] aug-cc-pCVQZ CCSD(T)?DPT(CCSD) 1.4104 2,677.9 47.3 8.52

Ref. [112] aug-cc-pV5Z-PP CCSD(T) 1.419 85.39

Ref. [74] Experiment 1.4144 2,648.97 45 (5) 8.465 0.00035 90.39

See text for details

DK Douglas–Kroll–Hess

Basis1: A triple-zeta Slater-type basis set with two polarization functions. DZ and TZ of Ref. [106]: The smaller set DZ consists of the sp-pvdz

set from the MOLFDIR suite in the DIRAC program package for Br (15s12p6d) and H (4s1p). The larger set TZ is the relativistic finite nucleus

optimized triple-zeta basis set including valence-correlating functions for Br (23s16p10d1f) and the cc-pVTZ of the MOLCAS package for H

(5s2p1d). DSO spin-orbit shift

Refs. [83, 84]: Values within the parenthesis correspond to the calculations made by the Dirac-Coulomb-(Gaunt) Hamiltonian. DK3-CC:

Theoretical best estimate obtained from a combination of DK3-CCSD, DK3-CCSDT, DK3-CCSDTQ with DZ, TZ, and QZ [68]

D: Corresponds to the deviation of SS-MRMPPT/aug-cc-pVTZ with respect to the experimental results
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character, and SS-MRMPPT is capable of describing the

electron correlation in a accurate manner over the entire

dissociation energy surface. It is worth noting that the

description of bond stretched hydrides affects the shape of

PES to the extent that the calculated spectroscopic con-

stants at the equilibrium bond lengths have appreciable

errors [68]. While SS-MRPT method naturally fixes the

failures of standard single-reference methods and is being

recently applied with a good degree of success to study

electronic states and energy surfaces of molecules dis-

playing pronounced multireference character, it inevitably

also has some limitations and difficulties which need to be

addressed. There is also a potential source of numerical

instability in the working equations of SS-MRPT theory.

Considering Eq. (2), we see that division by the reference

expansion coefficient cl in the numerator in certain cir-

cumstances may give rise to numerical instability when cl

is much smaller compared to cm (lead to rather large values

for Tl, which in turn introduces instability to eH ð2Þlm ) [46,

113–116]. The situation becomes more severe with

increasing size of the CAS, since many cl’s are close to

zero at one point of the potential energy curve or another.

A similar fact has also been reported in the parent SS-

MRCC theory [28] as well as in a related MRCC theories

developed by Hanrath [117] while SUMR- and BWMR-

based methods do not contain the cl weight in the

denominator. To get rid of this problem, various schemes

have been suggested and implemented [113, 114].19

Thanks to the fact that the variety of systems and CAS that

we have used till now (including the present work) to

implement the SS-MRMPPT method have illustrated that

the method does not face sever numerical instability of the

amplitude determining equations even when all the coef-

ficients are being included. Another obvious bottleneck of

CAS-based method is that the computational cost rises

exponentially with the size of active space, limiting

practical calculations to small active spaces (as that of

other CAS-based methods). The internally contracted CAS

approach [118–122] (that can ameliorate the computational

costs since its scale much lower than uncontracted meth-

ods) has evolved as a potential alternative that holds the

promise to bypass or at least to attenuate this shortcoming.

Among the perturbative methods the CIPSI code [16–18] is

internally contracted and externally decontracted and so are

its numerous variants. The popular and efficient CASPT2

method [6–8] is both internally and externally contracted,

and so is the NEVPT second-order expansion [19–22].

Moreover, similar to most MRPT’s, SS-MRPT does not

conserve orbital invariance of the underlying CAS wave-

function neither in its original form [28, 29], nor in a

reformulation suggested by various workers [39–45]. We

should point out at this stage that the JM ansatz applied to a

CAS reference function does not show orbital invariance

with respect to the transformation among the active orbi-

tals. As already numerically alluded by Mahapatra et al.

[39–44] SS-MRMPPT is not invariant to orbital rotations

that may leave the reference function unaffected. Recent

analysis of the orbital invariance problem due to Evan-

gelista and Gauss [123] has led us to the conclusion that

there are intrinsic limitations in the JM ansatz.

4 Concluding remark

The computation of energies and molecular properties for

multireference systems with chemical accuracy is one of

the most intriguing problems in electronic structure theory

and a convincing solution, warranting a balanced treatment

of dynamic and static electron correlation, has not been

presented yet. Several variants of perturbation theory for

MR situations have been proposed, but never turned into a

general tool. The state-specific multireference Møller–

Plesset perturbation theory, SS-MRMPPT (a Hilbert space

method that retains all of the flexibility of the wave func-

tion for optimizing the description of a single, target

electronic state) tailored particularly for multireference

systems possesses several attractive features [size-exten-

sivity, size-consistency (with localized active orbitals), and

the potential to be intruder free at the same time] that make

it a useful candidate for efficient theoretical descriptions of

dissociative phenomena and of many electronically excited

states, as well as of ground states in MR systems. It is a

multipartitioning generalization of the Møller–Plesset

second-order method (MP2) to the cases where the refer-

ence function is of the complete active space. It is built on

a wave operator formalism, in which the energy is obtained

as a root of an effective Hamiltonian. The present com-

putations further emphasize the utility of the method for

theoretical descriptions of dissociative phenomena of

19 Also, it has not escaped our attention that to eliminate or

considerably reduce the numerical instability of the cluster amplitudes

equations of the SS-MRMPT approach, one can use Tikhonov

regularization scheme [115], where replaces 1
cl

in the coupling term of

Eq. (2) by 1

ecl
:

1

ecl
¼ cl

c2
l þ s2

where s is a parameter set by users and is a real quantity. It is evident

that 1

ecl
¼ 1

cl
when cl has a large value while 1

ecl
¼ cl

s2 for very small

value of cl. However, at present we have not incorporated this scheme

in our code. We are now engaged in such an implementation which

we intend to present in near future. It is worth mentioning at this

juncture that the special care for the treatments of the amplitude

equation in conjunction with very small value of the reference coef-

ficients are not necessary for the unrelaxed description of the SS-

MRMPT method (see [47, 48]).
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ground states in MR systems. Our present applications of

SS-MRMPPT method to the single-bond dissociations of

HX (X = F, Cl, and Br) molecular systems in their ground

state again prove that the method is credible and can be

used to perform complete energy surface calculations.

Comparing with the estimations of recent generation cal-

culations along with experimental data (whenever avail-

able), we found that the present SS-MRMPPT calculations

provide acceptably good theoretical investigations on the

molecular constants including dissociation energy even

with the physically motivated smallest possible CAS [i.e.,

CAS(2,2)] and at an expense of low computational cost that

make it a serious candidate for efficient handling of elec-

tron correlation in MR-based methods. The pattern of

variation of spectroscopic constants with the size of the

basis sets is very encouraging. Our present studies in the

case of HF molecule clearly indicate that the SS-MRMPPT

results systematically improve when extending the basis set

and, in the CBS limit, best approximate the experimental

results. The work presented here shows that correlation-

consistent basis sets provide a systematic series of basis

sets of increasing accuracy and completeness. We should

also mention here that our previously published results

[39–44] along with the present one have showed that the

relative accuracy of the computed energy via SS-MRPT in

a wide range of distances on the PESs was also non-uni-

form, which is obviously not desirable. However, the non-

uniformity is not significant in general. This is also the case

for other MRPT calculations in conjunction with small

CAS. In fact, the overall accuracy of the present calcula-

tions is limited by the perturbatively approximated non-

relativistic wavefunction model. Even though more calcu-

lations with complete-correlation complete-basis-set

extrapolated potential surfaces along with the analysis of

the spectroscopic constants derived from these surfaces are

certainly needed to fully assess the applicability of the

approach in calculating PESs and such tests will be per-

formed in the near future, the results presented in this work

indicate that the approach has the capability of delivering

promising accuracy. In near future, we will also explore

more examples to show how SS-MRMPPT (and its internal

contracted variant) calculations can have an impact on

interesting and computationally challenging molecular

systems. It is worth stressing that unfavorable computa-

tional scaling with the size of the active space is another

formal deficiency of CAS-based methodologies which

limits their applicability to small active spaces. A solution

to the problem that afflict methods based on the CAS

requires the consideration of an alternative wave function

parameterization. A straightforward solution is to adopt a

contracted description of the ansatz of the starting wave

function as that of the contracted MRCI method. Such a

scheme in the context of SS-MRPT approach has already

been accomplished in our group and the results will be

published very soon.
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6. Andersson K, Malmqvist PÅ, Roos BO, Sadlej AJ, Wolinski K

(1990) J Chem Phys 94:5483

7. Andersson K, Malmqvist PÅ, Roos BO (1992) J Chem Phys
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62. Finley J, Malmqvist P-Å, Roos BO, Serrano-Andrés L (1998)

Chem Phys Lett 288:299

63. Shiozaki T, Gy}orffy W, Celani P, Werner H-J (2011) J Chem

Phys 135:081106

64. Camacho C, Cimiraglia R, Witek HA (2010) Phys Chem Chem

Phys 12:5058

65. Camacho C, Witek HA, Cimiraglia R (2010) J Chem Phys

132:244306

66. Olsen J, Fülscher M P (2000) Chem Phys Lett 326:225

67. van Dam HJJ, van Lenthe JH (1997) Mol Phys 90:1007

68. Hirata S, Yanai T, de Jong WA, Nakajima T, Hirao K (2004) J

Chem Phys 120:3297

69. Dunning TH Jr (1989) J Chem Phys 90:1007

70. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

71. Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999) J

Chem Phys 110:7667

72. Feller D (1996) J Comput Chem 17:1571

73. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi

V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045

74. Huber KP, Herzberg G (1979) In: Constants of Diatomic Mol-

ecules. Van Nostrand Reinhold, New York

75. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS,

Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S,

Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem

14:1347

76. Gordon MS, Schmidt MW (2005) . In: Dykstra CE, Kim KS,

Frenking G, Scuseria GE (eds) Theory and applications of

computational chemistry: the first 40 years of quantum chem-

istry, Elsevier, Amsterdam, pp 1167–1189

77. Dunham JL (1932) Phys Rev 41:721

78. Martin JML (1998) Chem Phys Lett 292:411

79. Müller H, Franke R, Vogtner S, Jaquet R, Kutzelnigg W (1998)

Theor Chem Acc 100:85

80. Li X, Paldus J (1998) J Chem Phys 108:637

81. Li X, Paldus J (2000) Int J Quantum Chem 80:743

82. Li X, Paldus J (2006) J Chem Phys 124:174101
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84. Styszyński (2000) J Chem Phys Lett 317:351

85. Chaudhuri RK, Freed KF, Abrash SA, Potts DM (2001) J Mol

Struct (Theochem) 547:83

86. Dutta A, Sherrill CD (2003) J Chem Phys 118:1610

87. Kowalski K, Piecuch P (2004) J Chem Phys 120:1715

88. Paap P, Mach P, Pittner J, Wilson S, Hubač I, Wilson S (2006)
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